
Math 3010 § 1.
Treibergs −−σιι

Final Exam Name:
May 1, 2018

1. Multiple choice. The choices are given in the columns “Date / Place” and “Contribution.”
For each mathematician in the table at the bottom, fill in the number of your choice for the place
and date, and a letter for your choice of their contribution.

Date/Place Contribution

1. 1598 – 1647, Bologna A. Algebraist, analyst, logician. Proposed 23 fundamental problems.

2. 1601 – 1665, Paris B. Axiomatic treatment of mechanics, classified cubics, binomial series.

3. 1616 – 1703, Oxford C. Beta, Gamma, exponential and Zeta functions and applications.

4. 1642 – 1727, Cambridge D. Calculus of variations: brachystochrone and tautochrone.

5. 1646 – 1716, Hanover E. Developed algebraic methods to deal with infinite processes.

6. 1654 – 1705, Basel F. Max where dy = 0, inflection where d2y = 0, d(uv) = u dv + v du.

7. 1707 – 1783, Berlin G. Method of indivisibles to compare areas and volumes.

8. 1854 – 1912, Paris H. Slope of tangent to curve. Probability.

9. 1862 – 1943, Göttingen I. Studied complex analysis, mathematical physics, DE’s, analysis situs.

Mathematician Date / Place Contribution

Johann Bernoulli 6 D

Bonaventura Cavalieri 1 G

Leonhard Euler 7 C

Pierre de Fermat 2 H

David Hilbert 9 A

Gottfried Wilhelm Leibnitz 5 F

Isaac Newton 4 B

Henri Poincaré 8 I

John Wallis 3 E
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2. Short Answer. Here a list of regions where mathematics developed. For each region,
identify an important mathematician of that region, state an important discovery by this
mathematican, and state a feature of the mathematics of that region that distinguishes it
from other regions.

Many answers are possible.

Region Mathematician Their Discovery Distinguishing Feature

Greece Euclid “Elements” was
model of logical
development

Dealt with irrationals
using geometric
arguments

China Zhū Shijié Eliminating variables
method in
simultaneaous
nonlinear equations

Computational
algorithms using
decimal place
numbers

India Bhâskara II General solution
to Pell’s equation

Progressed finding
integer solutions
to indeterminate
equations

Islamic

Region

al-Khwārizmı̄ Geometric treatment
of quadratic equation

Transmitted forgotten
Greek and Indian
mathematics to
Europe

Europe François Viète Solved cubic using
circular functions

First advance of
mathematics beyond
the Greeks
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3. Determine whether the following statements are true or false. Give a detailed explanantion
of ONE of your answers (a)–(d).

(a) There are infinitely many rational solutions of the Diophantine equation
x2 + y2 = 1.

True. Consider a line through the point (−1, 0) with rational slope t. Solve where it
intersects the circle.

x2 + y2 = 1

y = t(x+ 1)

Thus
x2 + t2(x+ 1)2 = 1

or
(t2 + 1)x2 + 2t2x+ (t2 − 1) = 0.

Since x = −1 is a zero, this factors

(x+ 1)((t2 + 1)x− (t2 − 1)) = 0

so

x =
t2 − 1

t2 + 1
=⇒ y = t(x+ 1) =

2t

t2 + 1

Since there are infinitely many rational t, and since x and y are rational functions
of t so are themselves rational, this parameterization gives infinitely many rational
solutions of x2 + y2 = 1.

(b) The cubic equation y3 = 3y + 8 may be solved by radicals.

True. Use Cardano’s solution of the cubic: suppose y = u+ v. Then

y3 = u3 + v3 + 3uvy = 3y + 8.

Cardanos trick is to solve separately

u3 + v3 = 8

3uv = 3.

Put v =
1

u
so that

u3 +
1

u3
= 8

which yields the quadratic equation

(u3)2 − 8u3 + 1 = 0.

Its solution is

u3 =
8 +

√
64− 4

2
= 4 +

√
15; v3 = 4−

√
15.

Thus the solution of the cubic is given by radicals as

y =
3

√
4 +

√
15 +

3

√
4−

√
15.
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(c) The real projective plane RP2 (the space of all lines through the origin in R3) is fun-
damentally different than the two sphere S2.
True. A line through the origin is determined by a unit vector u ∈ S2. The antipodal
point −u determines the same line so RP2 is the sphere with antipodal points identified.
On the sphere, any simple closed curve separates the sphere into two parts. But on
RP2, the equator does not separate the upper hemisphere from the lower, because
the hemispheres are the same place under the antipodal identification. A point P =
(x, y, z) in the upper hemisphere near the equator has 0 < z small and positive is
identified to (the same point in RP2) as P ′ = (−x,−y,−z) in the lower hemisphere.

(d) The kth pentagonal number is pk =
3k2 − k

2
.

True. p1 =
3 · 12 − 1

2
= 1, p2 =

3 · 22 − 2

2
= 5 so the first two terms are correct. (see

p. 39 of the text.) At each step, the number of points per side is increased. Thus the
number added is is k+1 more points to each of three sides, with the two corner points
in the middle double counted, thus

pk+1 = pk + 3(k + 1)− 2 = pk + 3k + 1

For example p3 = p2 + 7 = 5 + 7 = 12 and p4 = p3 + 10 = 12 + 10 = 22. The proof
is by induction. We have already checked the base case p1 = 1. Now assume that the
kth number is correct. Then, using the induction hypothesis,

pk+1 = pk + 3k + 1

=
3k2 − k

2
+ 3k + 1

=
3k2 − k + 6k + 2

2

=
3(k2 + 2k + 1)− k − 1

2

=
3(k + 1)2 − (k + 1)

2

and the induction step is proved.

4. (a) A sequence is defined from a starting number a0, and then by the recursion

ak+1 = bak + c, for k ≥ 1,

where b and c are constants. Find a closed form for the generating function f(x) for
the sequence a0, a1, a2, . . ..

Such a sequence occurs as the amount of money in a bank account which earns periodic
interest at the rate b− 1 and gets a periodic deposit of c. As we did for the Fibonacci
Sequence, the generating function is

f(x) =

∞∑
k=0

akx
k

We have, substituting j = k + 1,

xf(x) =

∞∑
k=0

akx
k+1 =

∞∑
j=1

aj−1x
j .

4



It follows from the recursion formula

f(x)− bxf(x) = a0 +

∞∑
j=1

(aj − baj−1)x
j = a0 +

∞∑
j=1

cxj

from which it follows that

(1− bx)f(x) = a0 + c

(
1

1− x
− 1

)
= a0 +

cx

1− x
.

We conclude
f(x) =

a0
1− bx

+
cx

(1− x)(1− bx)
.

(b) Following Newton, find the power series for f(x) =
1

3
√
1− x2

.

The binomial series is

(1 + y)p =
∞∑
k=0

(
p

j

)
yj .

Here y = −x2 and p = −1

3
. Computing the first four binomial coefficients,

(
− 1

3

0

)
= 1;

(
− 1

3

1

)
= −1

3
;(

− 1
3

2

)
=

(
− 1

3

) (
− 4

3

)
2!

=
4

32 · 2!
;

(
− 1

3

3

)
=

(
− 1

3

) (
− 4

3

) (
− 7

3

)
3!

= − 28

33 · 3!

Hence

(1 + y)−
1
3 = 1− 1

3
y +

4

32 · 2!
y2 − 28

33 · 3!
y3 + · · ·

1
3
√
1− x2

= 1 +
1

3
x2 +

4

32 · 2!
x4 +

28

33 · 3!
x6 + · · ·

5. Let T be a triangle whose vertices are (0, 0), (b, 0) and (0, h) with base b and height h has
area A = 1

2bh.

(a) Prove the area A = 1
2bh using Euclid’s Dissection Method.

If we make a congruent copy of the right triangle △ACD and glue it to △DBA we
get a rectangle ABCD of area bh with two congruent nonoverlapping subtriangles of
equal area. Thus 2A(△ACD) = bh.
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(b) Prove the area A = 1
2bh using Eudoxus’ Method of Exhaustion.

The use of Eudoxus Method for triangles is illustrative only because the volume of
triangles is known from other means. Let T be the triangle. Let us consider a lower
sum and an upper sum as in the sense of Riemann integration. We subdivide the

vertical side into n equal strips of height ∆h =
h

n
. For each k = 1, . . . , n the strip falls

between yk−1 and yk where yk =
kh

n
. The inner (green) staircase Ln is the union of

strips [yk−1, yk] × [0, xk−1] and the outer (yellow) staircase Un is the union of longer

strips [yk−1, yk]× [0, xk], where xk =
kb

n
. Their areas are

A(Ln) =

n∑
k=1

(k − 1)b

n
· h
n
=

hb

n2

∑
k=1

(k − 1) =
hbn(n− 1)

2n2

A(Un) =

n∑
k=1

kb

n
· h
n
=

hb

n2

n∑
k=1

k =
hbn(n+ 1)

2n2

A(Un)−A(Ln) =
hb

n

Now do Eudoxus’ proportion argument. Suppose there were a number S less than the
proposed area S < 1

2bh. Then the area of triangle is larger than S. To see it, choose n
so large that A(Un)−A(Ln) <

1
2bh− S. Indeed, since Ln is contained in the triangle,

S =
1

2
bh−

(
1

2
bh− S

)
<

hbn(n+ 1)

2n2
− (A(Un)−A(Ln)) = A(Ln) < A(T ).

Similarly, suppose there were a number W greater than the proposed area W > 1
2bh.

Then the area of triangle is smaller than W . To see it, choose n so large that A(Un)−
A(Ln) < W − 1

2bh. Since Un is contains the triangle,

W =
1

2
bh+

(
W − 1

2
bh

)
>

hbn(n− 1)

2n2
+ (A(Un)−A(Ln)) = A(Un) > A(T ).

We conclude A(T ) = 1
2bh.
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(c) Prove the area A = 1
2bh using Cavalieri’s’ Principle.

Cavalieri’s principle says that two figures have the same area if their slices have the
same length. Thus if y is the distance to C then the width of the triangle △ACD at
height y is

w(y) = b− b

h
y

On the other hand, the width of △DBA at height h− y is

z(h− y) = b−
(
b− b

h
(h− y)

)
= b− b

h
y

which is the same. Thus the areas of the two triangles are equal∫ h

0

w(y) dy =

∫ 0

h

z(h− y) d(h− y).

It follows as in (a),

2A(△ACD) = A(△ACD) +A(△DBA) = A(ABCD) = bh.

6. (a) Using Fermat’s method of ad-equality, find the slope of the tangent line at x > 1 of the
curve

y = x4 − x.

Let the tangent line to the curve at (x, f(x)) cross the x-axis at t. Then the slopes of
the triangles at two infinitesimally nearby points are equal to the slope

f(x)

x− t
=

f(x+ E)

x+ E − t
.

Cross multiplying

(x4 − x)(x+ E − t) =
(
(x+ E)4 − (x+ E)

)
(x− t)

expanding

(x4 − x)(x+ E − t) =
(
x4 + 4x3E + 6x2E2 + 4xE3 + E4 − x− E

)
(x− t)

cancelling

(x4 − x)E =
(
4x3E + 6x2E2 + 4xE3 + E4 − E

)
(x− t)

and dividing by E yields

x4 − x = (4x3 − 1)(x− t) +
(
6x2E + 4xE2 + E3

)
(x− t).
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Now, since E is small we drop any remaining E terms to find

x4 − x = (4x3 − 1)(x− t)

so the slope is
x4 − x

x− t
= 4x3 − 1.

(b) Use Newton’s method of fluxions or Leibnitz’s calculus of differentials to find the slope
of the same curve

y = x4 − x.

Newton viewed the equation dynamically. His fluxion is the rate of change of a variable
ẋ and his infinitesimals which he called moments of fluxion, are ẋo, where o is an
infinitely small quantity. So both sides change in a constrained fashion

y + ẏo = (x+ ẋo)4 − (x+ ẋo).

Expanding

y + ẏo = x4 + 4x3ẋo+ 6x2ẋ2o2 + 4xẋ3o3 + ẋ4o4 − x− ẋo.

Since y = x4 − x we get

ẏo = +4x3ẋo+ 6x2ẋ2o2 + 4xẋ3o3 + ẋ4o4 − ẋo.

Dividing by o yields

ẏ = +4x3ẋ− ẋ+ 6x2ẋ2o+ 4xẋ3o2 + ẋ4o3.

Now since o is negligible
ẏ = +4x3ẋ− ẋ

so the slope is
ẏ

ẋ
= 4x3 − 1.

Leibnitz was even more modern.

dy = d(x4 − x) = d(x4)− dx = 4x3 dx− dx

so the slope equals
dy

dx
= 4x3 − x.

7. (a) Use Euler’s method to find S = 1 +
1

32
+

1

52
+

1

72
+ · · · .

Hint: cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · =

(
1− 4x2

π2

)(
1− 4x2

32π2

)(
1− 4x2

52π2

)
· · ·

By changing variables y = x2 we see that

cos
√
y = 1− y

2!
+

y2

4!
− y3

6!
+ · · · =

(
1− y

π2

4

)(
1− y

32π2

4

)(
1− y

52π2

4

)
· · ·

whose zeros are

y =
π2

4
,

32π2

4
,

52π2

4
, . . .
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Euler assumed that the negative y1 coefficient gave the sum of the reciprocals

1

2!
=

1
π2

4

+
1

32π2

4

+
1

52π2

4

+ · · ·

In other words
π2

8
=

1

12
+

1

32
+

1

52
+ · · ·

(b) Is there a path in this graph that crosses each edge exactly once (an Eulerian path)?
Why or why not? If so, what is such a path?

There is no Eulerian path. The graph has four vertices with odd degree, C, D,
E and F . A path must start or end at a vertex with odd degree. But a path only has
two starting or ending points, thus it cannot start/end at four points.

8. Using Newton’s version of Newton’s method, starting from x0 = 2, do at least three iterations
of the algorithm to approximate the positive zero of x2 − 3.

We suppose x = 2 + p and substitute.

0 = x2 − 3 = (p+ 2)2 − 3 = p2 + 4p+ 1.

Neglecting the p2 term we get the first correction equation

0 = 4p+ 1 =⇒ p = −1

4
.

Thus x0 + p = x1 = 2− 1

4
=

7

4
.

We suppose p = − 1
4 + q and substitute.

0 = p2 + 4p+ 1 =

(
−1

4
+ q

)2

+ 4

(
−1

4
+ q

)
+ 1 =

1

16
+

7

2
q + q2

Neglecting the q2 term we get the second correction equation

0 =
1

16
+

7

2
q =⇒ q = − 1

56
.

Thus x0 + p+ q = x2 = 2− 1

4
− 1

56
=

97

56
.

We suppose q = − 1
56 + r and substitute.

0 =
1

16
+

7

2
q + q2 =

1

16
+

7

2

(
− 1

56
+ r

)
+

(
− 1

56
+ r

)2

=
1

562
+

97

28
r + r2
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Neglecting the r2 term we get the third correction equation

0 =
1

562
+

97

28
r =⇒ r = − 1

2 · 56 · 97
= − 1

10864
.

Thus x0 + p+ q + r = x3 = 2− 1

4
− 1

56
− 1

10864
=

18817

10864
.

9. Find all integers x that simultaneously satisfy the congruences.

x ≡ 1 mod 5

x ≡ 3 mod 6

x ≡ 5 mod 7

To satisfy the first congruence, x = 1 + 5y for some integer y. To satisfy the second,

1 + 5y = 3− 6z

for some integer z, hence
5y + 6z = 2

Since 5(−1) + 6(1) = 1, all solutions are given by

y = −2 + 6t, z = 2− 5t

for some integer t. This implies

x = 1 + 5(−2 + 6t) = −9 + 30t.

Finally to satisfy the last congruence,

−9 + 30t = 5− 7u

for some integer u. In other words

30t+ 7u = 14.

Because 30 · 1 + 7(−4) = 2 so 30 · 7 + 7(−28) = 14, we have a general solution

t = 7 + 7v, u = −28− 30v

for some integer v. It follows that all solutions are of the form

x = −9 + 30t = −9 + 30(7 + 7v) = 201 + 210v.

We check:
201 = 40 · 5 + 1 = 33 · 6 + 3 = 28 · 7 + 5.
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